3.264 \(\int \sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)} \, dx\)

Optimal. Leaf size=85 \[ \frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)}}\right )}{d}-\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a-a \cos (c+d x)}} \]

[Out]

arctanh(sin(d*x+c)*a^(1/2)/cos(d*x+c)^(1/2)/(a-a*cos(d*x+c))^(1/2))*a^(1/2)/d-a*sin(d*x+c)*cos(d*x+c)^(1/2)/d/
(a-a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {2770, 2775, 207} \[ \frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)}}\right )}{d}-\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a-a \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*Sqrt[a - a*Cos[c + d*x]],x]

[Out]

(Sqrt[a]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a - a*Cos[c + d*x]])])/d - (a*Sqrt[Cos[c + d*
x]]*Sin[c + d*x])/(d*Sqrt[a - a*Cos[c + d*x]])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 2770

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(2*n*(b*c + a*d)
)/(b*(2*n + 1)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rule 2775

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*b)/f, Subst[Int[1/(b + d*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)} \, dx &=-\frac {a \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a-a \cos (c+d x)}}-\frac {1}{2} \int \frac {\sqrt {a-a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\\ &=-\frac {a \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a-a \cos (c+d x)}}-\frac {a \operatorname {Subst}\left (\int \frac {1}{-a+x^2} \, dx,x,\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)}}\right )}{d}\\ &=\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)}}\right )}{d}-\frac {a \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a-a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.75, size = 264, normalized size = 3.11 \[ \frac {\sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)} \left (-2 \sqrt {2} \cot \left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x) (\cos (d x)+i \sin (d x))}+\sqrt {\cos (c)-i \sin (c)} \left (\cot \left (\frac {1}{2} (c+d x)\right )+i\right ) \tanh ^{-1}\left (\frac {e^{i d x}}{\sqrt {\cos (c)-i \sin (c)} \sqrt {e^{2 i d x} (\cos (c)+i \sin (c))-i \sin (c)+\cos (c)}}\right )+\sqrt {\cos (c)-i \sin (c)} \left (\cot \left (\frac {1}{2} (c+d x)\right )+i\right ) \tanh ^{-1}\left (\frac {\sqrt {e^{2 i d x} (\cos (c)+i \sin (c))-i \sin (c)+\cos (c)}}{\sqrt {\cos (c)-i \sin (c)}}\right )\right )}{2 d \sqrt {i \sin (c) \left (-1+e^{2 i d x}\right )+\cos (c) \left (1+e^{2 i d x}\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]*Sqrt[a - a*Cos[c + d*x]],x]

[Out]

(Sqrt[Cos[c + d*x]]*Sqrt[a - a*Cos[c + d*x]]*(ArcTanh[E^(I*d*x)/(Sqrt[Cos[c] - I*Sin[c]]*Sqrt[Cos[c] + E^((2*I
)*d*x)*(Cos[c] + I*Sin[c]) - I*Sin[c]])]*(I + Cot[(c + d*x)/2])*Sqrt[Cos[c] - I*Sin[c]] + ArcTanh[Sqrt[Cos[c]
+ E^((2*I)*d*x)*(Cos[c] + I*Sin[c]) - I*Sin[c]]/Sqrt[Cos[c] - I*Sin[c]]]*(I + Cot[(c + d*x)/2])*Sqrt[Cos[c] -
I*Sin[c]] - 2*Sqrt[2]*Cot[(c + d*x)/2]*Sqrt[Cos[c + d*x]*(Cos[d*x] + I*Sin[d*x])]))/(2*d*Sqrt[(1 + E^((2*I)*d*
x))*Cos[c] + I*(-1 + E^((2*I)*d*x))*Sin[c]])

________________________________________________________________________________________

fricas [A]  time = 0.94, size = 142, normalized size = 1.67 \[ \frac {\sqrt {a} \log \left (-\frac {4 \, \sqrt {-a \cos \left (d x + c\right ) + a} {\left (2 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \sqrt {\cos \left (d x + c\right )} + {\left (8 \, a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right )}{\sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) - 4 \, \sqrt {-a \cos \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) + 1\right )} \sqrt {\cos \left (d x + c\right )}}{4 \, d \sin \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a-a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(a)*log(-(4*sqrt(-a*cos(d*x + c) + a)*(2*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*sqrt(cos(d*x +
c)) + (8*a*cos(d*x + c)^2 + 8*a*cos(d*x + c) + a)*sin(d*x + c))/sin(d*x + c))*sin(d*x + c) - 4*sqrt(-a*cos(d*x
 + c) + a)*(cos(d*x + c) + 1)*sqrt(cos(d*x + c)))/(d*sin(d*x + c))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {-a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a-a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a*cos(d*x + c) + a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [A]  time = 0.15, size = 94, normalized size = 1.11 \[ -\frac {\left (1+\cos \left (d x +c \right )\right ) \left (-\arctanh \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\cos \left (d x +c \right )\right ) \sqrt {-2 a \left (-1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{2 d \sqrt {\cos \left (d x +c \right )}\, \sin \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(a-a*cos(d*x+c))^(1/2),x)

[Out]

-1/2/d*(1+cos(d*x+c))*(-arctanh((cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+cos(d*x+c
))/cos(d*x+c)^(1/2)/sin(d*x+c)*(-2*a*(-1+cos(d*x+c)))^(1/2)*2^(1/2)

________________________________________________________________________________________

maxima [B]  time = 0.98, size = 795, normalized size = 9.35 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a-a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/4*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (cos(d*x + c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1)))*sqrt(-a) + sqrt(-a)*(arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1
/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4
)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c
) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arc
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) + arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos
(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2
*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) -
arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1)))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \sqrt {\cos \left (c+d\,x\right )}\,\sqrt {a-a\,\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(1/2)*(a - a*cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^(1/2)*(a - a*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {- a \left (\cos {\left (c + d x \right )} - 1\right )} \sqrt {\cos {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(a-a*cos(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(-a*(cos(c + d*x) - 1))*sqrt(cos(c + d*x)), x)

________________________________________________________________________________________